
Nested nonparametric processes

Federico Camerlenghi

University of Milano – Bicocca & Collegio Carlo Alberto



PAPERS AND CO-AUTHORS

We focus on the papers:

▶ CAMERLENGHI F., DUNSON D.B., LIJOI A., PRÜNSTER I., RODRIGUEZ A. (2019).
Latent nested nonparametric priors (with discussion). Bayesian Analysis, 14,
1303–1356.

▶ DENTI F., CAMERLENGHI F., GUINDANI M., MIRA A. (2022). A Common Atoms
Model for the Bayesian Nonparametric Analysis of Nested Data. Journal of the
American Statistical Association, to appear.

2 / 31



OUTLINE

INTRODUCTION

Exchangeability & Partial Exchangeability

NESTED PROCESSES

From NDP to nested processes

Clustering structure

THE COMMON ATOMS MODEL

Model definition and properties

CAM in mixture models

CAM for count measurements

3 / 31



INTRODUCTION



EXCHANGEABILITY

▶ Analogy or symmetry between observations justifies induction, i.e. the prediction
of future outcomes of an experiment.

▶ Exchangeability is the simplest form of analogy across data: a sequence of
observations {Xn}n≥1 is exchangeable iff

(X1, · · · ,Xn)
d
= (Xσ(1), · · · ,Xσ(n))

for every n ≥ 1 and every permutation σ of {1, . . . , n}.

In many applications exchangeability is too restrictive since data are affected by some
sort of heterogeneity (e.g. time-dependent data, related experiments,
covariate-indexed observations). Indeed (de Finetti, 1938) writes:

But the case of exchangeability can only be considered as a limiting case:
the case in which this “analogy” is, in a certain sense, absolute for all events
under consideration. [..] To get from the case of exchangeability to other
cases which are more general but still tractable, we must take up the case
where we still encounter “analogies” among the events under consideration,
but without attaining the limiting case of exchangeability.
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PARTIAL EXCHANGEABILITY

Partial exchangeability is a more appropriate assumption in presence of
heterogeneous data: data are considered exchangeable within the same group and
conditional independent across different groups.
The sequences

{
(Xi,j )j≥1 : i = 1, 2

}
are partially exchangeable (d = 2) iff

(X1,1, · · · ,X1,n1 ,X2,1, · · · ,X2,n2 )
d
= (X1,σ(1), · · · ,X1,σ(n1)

,X2,π(1), · · · ,X2,π(n2)
)

for every n1, n2 ≥ 1 and every permutation σ and π of {1, . . . , n1} and {1, . . . , n2}.

DE FINETTI’S REPRESENTATION THEOREM

The sequences
{
(Xi,j )j≥1 : i = 1, 2

}
are partially exchangeable iff there exists a

vector of dependent random probability measures (p̃1, p̃2) such that:

(X1,j1 ,X2,j2 )|p̃1, p̃2
iid∼ p̃1 × p̃2

(p̃1, p̃2) ∼ Q.

The distribution Q is known as the de Finetti measure of the sequence.
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DEPENDENT NONPARAMETRIC PRIORS

Several Bayesian nonparametric models have been proposed to accommodate for
heterogeneity:

▶ additive structures: (Müller, Quintana & Rosner; 2004), (Lijoi, Nipoti & Prünster;
2014), (C, Lijoi, Nipoti & Prünster; 2022+);

▶ hierarchical structures: (Teh, Jordan, Beal & Blei; 2006) , (C, Lijoi, Orbanz &
Prünster; 2019), (Colombi, Argiento, C & Paci; 2022+);

▶ nested structures: (Rodriguez, Dunson & Gelfand; 2008), (C, Dunson, Lijoi,
Prünster & Rodriguez; 2019), (Denti, C, Guindani & Mira; 2022);

▶ other contributions, see (Quintana et al.; 2022) for a complete review.

Problems arising in presence of partially exchangeable observations:

▶ theoretical properties and clustering structures are usually complex to derive and
to deal with;

▶ develop efficient and fast marginal or conditional algorithms for complex
problems.
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THE NESTED DIRICHLET PROCESS

The nested structure of (Rodriguez, Dunson & Gelfand; 2008) is as follows:

(X1,j1 ,X2,j2 )|p̃1, p̃2
iid∼ p̃1 × p̃2

(p̃1, p̃2)|q̃ ∼ q̃2

where q̃ is a random probability measure on the space PX (space of all random
probability measures on X), i.e.

q̃ =
∑
i≥1

ωiδGi
, Gi =

∑
ℓ≥1

wℓ,iδθℓ,i

and θℓ,i
iid∼ Q0, for a non–atomic probability measure Q0 on X.

ISSUES WITH NESTED STRUCTURES

If the two samples X1 and X2 share at least one value, then p̃1 = p̃2 almost surely.

1. This degeneracy property holds true for general nested processes based on
Completely Random Measures;

2. There are alternative models to overcome the drawback: Latent Nested
Processes and Common Atoms Model (CAM).
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NESTED PROCESSES



COMPLETELY RANDOM MEASURES (CRMS)

Let µ̃ be a random measure on the space X, then its law is characterized by the
Laplace functional

Lµ̃(f ) := E[e−
∫
X f (x)µ̃(dx)],

defined for each measurable function f : X → R+.

COMPLETELY RANDOM MEASURES (CRMS)
µ̃ is termed a completely random measure iff the random variables µ̃(A1), . . . , µ̃(Ak )

are independent for any choice of disjoint Borel sets A1, . . . ,Ak ∈ X and for any
k ≥ 1.

We concentrate on CRMs with both random jumps and random atoms:

µ̃( · ) =
∞∑
i=1

JiδZi ( · ), with Laplace functional Lµ̃(f ) = e−
∫
X×R+ (1−e−sf (x))ν(dx,ds)

for any measurable function f : X → R+. ν is termed the intensity measure and it

uniquely characterizes µ̃.
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PRIORS BASED ON COMPLETELY RANDOM MEASURES

NORMALIZED COMPLETELY RANDOM MEASURES

Let µ̃ be a CRM on (X,X ) such that P(0 < µ̃(X) < ∞) = 1, then the random
probability measure

p̃( · ) =
µ̃( · )
µ̃(X)

is termed a Normalized Random Measure with Independent increments (NRMI). See
(Regazzini, Lijoi & Prünster; 2003).

The NRMI p̃ is characterized by the intensity measure ν of the associated CRM µ̃,
noteworthy examples are:

▶ if µ̃ is a gamma CRM, i.e. ν(dx , ds) = e−s/scdsP0(dx), the associated NRMI p̃
is a Dirichlet process, denoted as D(cP0);

▶ if µ̃ is a σ–stable CRM, i.e. ν(dx , ds) = σs−1−σ/Γ(1 − σ)dsP0(dx), the
associated NRMI p̃ is a σ–stable process, denoted as σ–stb(P0);

We will focus on homogeneous NRMIs, i.e. whose associated CRM µ̃ is homogeneous

having intensity ν(dx , ds) = ρ(s)ds cP0(dx), writing p̃ ∼ NRMI(ρ, c;P0).
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NESTED PROCESSES

NESTED MODELS BASED ON NRMIS

(X1,j1 ,X2,j2 )|p̃1, p̃2
ind∼ p̃1 × p̃2 (j1, j2) ∈ N× N

p̃1, p̃2|q̃
iid∼ q̃, q̃ d

=
µ̃

µ̃(PX)

(
=

∞∑
i=1

Ji∑
h≥1 Jh

δq̃0,i
( · )
)

where:

▶ µ̃ is a CRM on (PX,PX) with Lévy intensity ν(dp, ds) = c ρ(s)dsQ(dp);

▶ Q is a probability measure on (PX,PX) which equals the distribution of a NRMI:

Q( · ) = P(q̃0 ∈ · ), and q̃0 ∼ NRMI(ρ0, c0;Q0).

Remarks:

▶ the model extends the Nested Dirichlet Process (Rodriguez, Dunson & Gelfand;
2008) to nested NRMIs;

▶ p̃1 and p̃2 are exchangeable and, since q̃ is almost surely discrete, one has

π1 := P(p̃1 = p̃2) > 0
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PARTITION STRUCTURE

▶ Consider X1 and X2 two samples from a partially exchangeable array of
observations having size size n1 and n2, respectively;

▶ (p̃1, p̃2) are two nested random probability measures as defined before.

MIXED MOMENTS

E
∫

P2
X

f1(p1)f2(p2)q̃(dp1)q̃(dp2)

= π1

∫
PX

f1(p)f2(p)Q(dp) + (1 − π1)

∫
PX

f1(p)Q(dp)
∫

PX

f2(p)Q(dp),

for every measurable functions f1, f2 : PX → R+.

The moments are a convex combination of the full exchangeable situation and
independence across samples.

TIES ACROSS SAMPLES

Let X1,j1 (resp. X2,j2 ) be an observation from the first (resp. second) sample, then

P(X1,j1 = X2,j2 ) > 0.
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The observations X1 and X2 may be partitioned into k = k0 + k1 + k2 clusters
according to the following scheme:

▶ k1 distinct values are specific to X1, having frequencies n1 = (n1,1, · · · , n1,k1 );

▶ k2 distinct values are specific to X2, having frequencies n2 = (n2,1, · · · , n2,k2 );

▶ k0 distinct values are shared by the two samples, having frequencies
q1 = (q1,1, · · · , q1,k0 ) and q2 = (q2,1, · · · , q2,k0 ).

The probability of having a specific partition of the two samples in k clusters is termed
partially Exchangeable Partition Probability Function (pEPPF).

PARTIALLY EXCHANGEABLE PARTITION PROBABILITY FUNCTION

Π
(n)
k (n1,n2,q1,q2) = π1Φ

(n)
k (n1,n2,q1 + q2) + (1 − π1)Φ

(n1)
k1

(n1)Φ
(n2)
k2

(n2)11{0}(k0).

▶ Φ
(n)
k : situation of full exchangeability

▶ Φ
(n1)
k1

Φ
(n2)
k2

: product of two EPPFs in a situation of unconditional independence
across samples.

▶ Whenever k0 ̸= 0 the model reduces to a situation of full exchangeability, being
P(p̃1 = p̃2|X1,X2) = 1: this is too restrictive!
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APPLICATION: DENSITY ESTIMATION

MODEL FOR DENSITY ESTIMATION

Data have been generated by two random dependent densities f̃i =
∫
Θ h(x ; θ)p̃i (dθ),

for i = 1, 2:

(X1,j1 ,X2,j2 )|(θ1,j1 , θ2,j2 ) ∼ h( · ; θ1,j1 )× h( · ; θ2,j2 )

(θ1,j1 , θ2,j2 )|p̃1, p̃2
iid∼ p̃1 × p̃2

being:

▶ h(·; θ), where θ = (M,V ) ∈ R× R+, is a Gaussian kernel on R with mean M and
variance V ;

▶ (p̃1, p̃2) is a nested process.

▶ Estimation of random dependent densities is carried out through an MCMC
procedure based on the pEPPF;
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TRUE AND ESTIMATED DENSITIES

The n1 = n2 = 100 data X1 and X2 have been generated from:

X1 ∼
1
2

N(5, 0.6) +
1
2

N(10, 0.6), X2 ∼
1
2

N(5, 0.6) +
1
2

N(0, 0.6).

(a) Density: first group
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(b) Density: second group
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The presence of a common component N(5, 0.6) forces the equality of the two random
probability measures

⇓
The two estimated densities are the same.
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THE COMMON ATOMS MODEL



THE CAM

The Common Atoms Model (CAM) introduced by (Denti, C, Guindani & Mira; 2022) is:

(X1,j1 ,X2,j2 )|p̃1, p̃2
iid∼ p̃1 × p̃2

(p̃1, p̃2)|q̃ ∼ q̃2

where q̃ is a random probability measure on the space PX defined as

q̃ =
∑
i≥1

ωiδGi
, Gi =

∑
ℓ≥1

wℓ,iδθℓ .

▶ the atoms θ1, θ2, . . . are shared across the random probability measures Gi ’s,

and θℓ
iid∼ Q0, for a non–atomic probability measure Q0;

▶ the sequence of weights (ωi )i≥1 has a GEM distribution, i.e. we consider

Vi
iid∼ Beta(1, α) and

ω1 = V1, ωi = Vi

i−1∏
r=1

(1 − Vr ), i > 1,

we will write (ωi )i≥1 ∼ GEM(α), being α > 0;

▶ the sequences (wℓ,i )ℓ≥1 are i.i.d. with distribution GEM(β), being β > 0.
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CAM: PEPPF

Consider two samples X1 and X2 of size n1 and n2, respectively, and suppose they
induce a partition into k = k0 + k1 + k2 groups:

▶ k1 distinct values are specific to X1, having frequencies n1 = (n1,1, · · · , n1,k1 );

▶ k2 distinct values are specific to X2, having frequencies n2 = (n2,1, · · · , n2,k2 );

▶ k0 distinct values are shared by the two samples, having frequencies
q1 = (q1,1, · · · , q1,k0 ) and q2 = (q2,1, · · · , q2,k0 ).

PEPPF: CAM
Under the CAM, the pEPPF equals:

Π
(n)
k (n1,n2,q1,q2) = π1Φ

(n)
k (n1,n2,q1 + q2) + (1 − π1)I(n1,n2,q1,q2)

where π1 = P(p̃1 = p̃2) and

I(n1,n2,q1,q2) =

∫
Xk0+k1+k2

E
2∏

i=1

ki∏
j=1

G
ni,j
i (dx∗

i,j )

k0∏
j=1

G
qi,j
i (dz∗

j )
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We concentrate on the term

I(n1,n2,q1,q2) =

∫
Xk0+k1+k2

E
2∏

i=1

ki∏
j=1

G
ni,j
i (dx∗

i,j )

k0∏
j=1

G
qi,j
i (dz∗

j )

where the expected value is made w.r.t.

Gi =
∑
ℓ≥1

wℓ,iδθℓ

and

▶ θ1, θ2, . . .
iid∼ Q0: common atoms;

▶ (wℓ,i )ℓ≥1 ∼ GEM(β): weights.

THEOREM

If X1 and X2 share k0 > 0 distinct values, one has

I(n1,n2,q1,q2) > 0

Then, the CAM does not reduce to the full exchangeable model in presence of
common observations across samples.
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CLUSTERING STRUCTURE

The CAM induces ties at the distributional level and observational level:

▶ ties among distributions are possible in view of the discreteness of q̃, indeed:

P(p̃1 = p̃2) =
1

1 + α
;

▶ ties across samples X1 and X2 are possible with probability

P(X1,j1 = X2,j2 ) =
1

α+ 1

[
1

1 + β
+ α

1
2β + 1

]
Thus, the CAM allows for a two-fold clustering structure:

▶ distributional clustering;

▶ observational clustering, allowing for borrowing of information across layers.
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DEPENDENCE ACROSS p̃1 AND p̃2

COVARIANCE AND CORRELATION

▶ For any measurable sets A,B, the covariance equals

Cov(p̃1(A), p̃2(B)) =

(
π1

1 + β
+

1 − π1

1 + 2β

)
(Q0(A ∩ B)− Q0(A)Q0(B))

where π1 = 1/(α+ 1).

▶ The correlation on the same set A equals

ρ1,2 := Corr(p̃1(A), p̃2(A)) = 1 −
β

2β + 1
·

α

α+ 1

The correlation ρ1,2:

▶ does not depend on the set A, it can be considered a measure of dependence
across p̃1 and p̃2;

▶ lies in the interval (1/2, 1), this is useful in genomics, where the experimental
units are quite similar.
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CAM: EXTENSIONS AND APPLICATIONS

▶ CAM may be easily extended to the case of d > 2 groups of observations:

p̃1, . . . , p̃d |q̃ ∼ q̃

and all the previous theoretical results can be extended to this setting;

▶ CAM can be used to model continuous distributions by considering a
nonparametric mixture

(X1,j1 , . . . ,Xd,jd )|(f̃1, . . . , f̃d ) ∼ f̃1 × · · · × f̃d

f̃i ( · ) =
∫
Θ

h( · ; θ)p̃i (dθ) i = 1, . . . , d

▶ CAM can be adapted to count data, where in group i ∈ {1, . . . , d} one observes
the vector of counts

Zi = (Zi,1, . . . ,Zi,ni ) ∈ Nni

According to (Canale & Dunson; 2011), we embed the CAM in a rounded mixture
of Gaussian framework.
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COMMON ATOMS MIXTURE MODELS

MODEL FOR DENSITY ESTIMATION

Data have been generated by random dependent densities f̃i =
∫
Θ h(x ; θ)p̃i (dθ), for

i = 1, . . . , d :

(X1,j1 , . . . ,Xd,jd )|(θ1,j1 , . . . , θd,jd ) ∼ h( · ; θ1,j1 )× · · · × h( · ; θd,jd )

(θ1,j1 , . . . , θd,jd )|p̃1, . . . , p̃d
iid∼ p̃1 × · · · × p̃d

being:

▶ h(·; θ), where θ = (M,V ) ∈ R× R+, is a Gaussian kernel with mean M and
variance V ;

▶ (p̃1, · · · , p̃d ) is a CAM.

Posterior inference is carried out by implementing

▶ a truncated version of the Blocked-Gibbs sampler (Ishwaran & James; 2001);

▶ a slice-efficient sampler, extending the work of (Kalli et al.; 2011).
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A SIMULATION STUDY

We consider the following scenario:

▶ d = 12 groups (or units) of observations;

▶ we sample two units from the following six different distributions

Xh ∼
h∑

ℓ=1

1
h

N(mh, 0.6), h = 1, . . . , 6

and (m1, . . . ,m6) = (0, 5, 10, 13, 16, 20) is the vector of means;

▶ all the units have the same cardinality ni = 75.

Note that:

▶ data are generated from 6 different distributions;

▶ the mixture components are shared across groups, and their true number is 6.
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DATASET
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TRUE VS ESTIMATED DENSITIES
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DISTRIBUTIONAL CLUSTERING
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CAM FOR MICROBIOME STUDIES

In microbiome studies, one typically deals with count data:

▶ d is the number of subjects in the study;

▶ for subject i ∈ {1, . . . , d}, one observe the counts of a microbial sequence

Zi = (Zi,1, . . . ,Zi,ni ) ∈ Nni ;

▶ Zi,j is referred to as the frequency of the j th OTU (operational taxonomic unit) in
subject i .

CAM FOR COUNT DATA

For each data point Zi,j , let us introduce a latent variable Xi,j and assume that:

P(Zi,j = q|Xi,j ) = 1[aq ,aq+1)
(Xi,j ), q ∈ N

where

▶ a0 < a1 < · · · < a∞ is a sequence of threshold values on the real line;

▶ the Xi,j ’s are modelled as a CAM mixture.

See also (Canale & Dunson; 2011).
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DATASET

We consider the dataset of (O’Keefe et al.; 2015):

▶ fecal samples of d = 38 subjects;

▶ ni = 119 taxa measured for each subject;

▶ OTUs refer to middle-aged African Americans (AA) and rural Africans (AF).
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DISTRIBUTIONAL CLUSTERING
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Remarks:

▶ the optimal partition is estimated by the approach of (Wade & Ghahramani;
2018), based on the minimization of the Variation of Information;

▶ the different subgroups of AA and AF are captured by the CAM, DC-3 contains
only one subject with a unique microbiome distribution.
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OBSERVATIONAL CLUSTERING

As for observational clustering, we recognize 9 clusters:

▶ they represent intensities of the latent process underlying the counts;

▶ they are grouped in three macro clusters representing the abundance classes
(low, medium and high);
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