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The intrinsic prior Bayes factor for testing a precise hypothesis

Consider the test of H0 : θ = θ0 versus H1 : θ 6= θ0, where θ is a

k-dimensional unknown parameter, based on i.i.d. data x = (x1, . . . , xn)

having density f(x | θ). Suppose πO(θ) is a standard objective estimation

prior (it could be just constant). Then the intrinsic prior Bayes factor for the

test is

B01 =
f(x | θ0)∫

[
∫
f(x | θ)πO(θ | x∗) dθ]f(x∗ | θ0) dx∗

=
f(x | θ0)∫

mO(x | x∗)f(x∗ | θ0) dx∗ ,

when x∗ = (x∗
1, . . . , x

∗
k) is an imaginary minimal training sample (more

formally, one wants that mO(x∗) =
∫
f(x∗ | θ)πO(θ) dθ < ∞ but mO(x∗) be

infinite for a smaller sample), πO(θ | x∗) = f(x∗ | θ)πO(θ)/mO(x∗), and

mO(x | x∗) = mO(x,x∗)/mO(x∗).
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This is the Bayes factor arising from the intrinsic prior

πI(θ) =

∫
πO(θ | x∗)f(x∗ | θ0) dx

∗ ,

using the expected posterior prior formulation of an intrinsic prior.

Example (Higgs Boson): Test H0 : θ = 0 versus H0 : θ > 0, based on i.i.d.

xi ∼ f(xi | θ) = (θ + b) exp{−(θ + b)xi}, i = 1, . . . , n, where θ is the mass of

the Higgs boson and b is a known background mean rate.

• The usual objective estimation prior for θ would be πO(θ) = 1/(θ + b) .

• A minimal sample size for the resulting posterior to be proper is k = 1.

• Computation then yields πI(θ) =
∫
πO(θ | x∗

1)f(x
∗
1 | 0)dx∗

1 = b/(θ + b)2

and

B01 =
bn exp{−bnx̄}∫∞

0
(θ + b)n exp{−(θ + b)nx̄}b(θ + b)−2 dθ

=

[
(n− 2)!

n∑

i=2

(bnx̄)1−i

(n− i)!

]−1

.
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Variable Selection in the Normal Linear Model

• The full model: observe independent y1, y2, . . . , yn, where

yi = [x0,i1β01 + · · ·+ x0,ik0β0k0 ] + xi1β1 + · · ·+ xipβp + ǫi ,

– the x0,ij and xij being given covariates;

– the β’s being unknown;

– the ǫi being independent N(ǫ | 0, σ2) errors, with σ2 unknown.

• Defining y = (y1, . . . , yn)
′

, X0 as the n× k0 matrix with elements x0,ij ,

X as the n× p matrix with elements xij , β0 = (β01, . . . , β0k0)
′

, and

β = (β1, . . . , βp)
′

, this model can be written

MF : y ∼ Nn(y | X0β0 +Xβ, σ2I) .
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• The simplest model is assumed to be

M0 : y ∼ Nn(y | X0β0, σ
2
I) ;

with X0 consisting of the covariates that are to be included in all

models (e.g., the intercept in ordinary linear regression).

• Between M0 and MF are 2p − 2 other models Mi, each additionally

including a non-null subset of ki of the remaining p covariates:

Mi : y ∼ Nn(y | X0β0 +Xiβi, σ
2
I) ;

Xi is the n× ki matrix consisting of the chosen covariates, i.e., the chosen

columns of X; the corresponding vector of unknown parameters is denoted βi.

• (β0, σ
2) are the common parameters in all models,

• πi(β0,βi, σ
2) is the prior distribution of the parameters in Mi,

• Pr(Mi) is the prior probability of model Mi. (We use the

recommendation of Jeffreys in examples.)
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Bayes model selection

• Is based on posterior probabilities for each model:

Pr(Mi | y) =
mi(y)Pr(Mi)∑N

j=1 mj(y)Pr(Mj)
,

where

mj(y) =

∫
Nn(y | X0β0 +Xjβj , σ

2I)πj(β0, βj , σ
2) dβ0 dβj dσ

2

is the marginal likelihood of Mj , quantifying how likely the observed

data is under that model.

• Bji =
mj(y)

mi(y)
is the Bayes factor of Mj to Mi.

• pi =
∑

{Mk that contain xi} Pr(Mk | y) is the posterior inclusion

probability of the covariate xi.
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The ‘Robust’ conventional priors for variable selection

(Bayarri, Berger, Forte and Garcia-Donato, 2012):

Defining Σi = σ2 (V
′

iV i)
−1, where V i = (In −X0(X

′

0X0)
−1X

′

0)Xi,

πR
0 (β0, σ

2) =
1

σ2
,

πR
i (β0,βi, σ

2) =
1

σ2

∫ 1

0

Nki

(
βi

∣∣∣∣ 0,
(

1 + n

λ(k0 + ki)
− 1

)
Σi

)
1

2
√
λ
dλ .

“Although this prior is not closed form, it gives closed form marginal
likelihoods, and closed form Bayes factors

Bi0 =

[

n+ 1

ki + k0

]

−

ki

2 Q
−(n−k0)/2
i0

ki + 1
2F1

[ki + 1

2
;
n− k0

2
;
ki + 3

2
;
(1−Q−1

i0 )(ki + k0)

(1 + n)

]

,

where 2F1 is the standard (Gauss) hypergeometric function and

Qi0 = SSEi/SSE0

is the ratio of the sum of squared errors of models Mi and M0.”

14



OBayes 2022, UC Santa Cruz✬

✫

✩

✪

New expression:

Bi0 =
Cn,ki

2
Q

−(n−k0−ki−1)/2
i0 (1−Qi0)

−(ki+1)/2Beta

(
ki + 1

2
,
n− k0 − ki − 1

2

)

×F
Beta(

ki+1

2 ,
n−k0−ki−1

2 )

((
1 + C2

n,ki

Qi0

1−Qi0

)−1
)

,

where Cn,ki
=

√
1+n√
k0+ki

, Beta(·, ·) is the Beta function and FBeta(a,b)(·) is the
CDF of the Beta(a, b) distribution.

Example: Bayesian t-test. Here k0 = 0 and k1 = 1. It is easy to see that

Q10 = (1 + t2

n−1 )
−1, where t is the usual t-statistic. Computation yields that

B10 =

√
n+ 1

(n− 2)

(n− 1)

t2

(
1 +

t2

n− 1

)n/2
(
1−

[
1 +

t2

n2 − 1

]−(n−2)/2
)

.

As t → 0, B10 → 1/[2
√
n+ 1]. For n = 2, this is to be interpreted as

B10 =

√
3

2
·
(
1 +

1

t2

)
· log

(
1 +

t2

3

)
.
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To study robustness with respect to the scale of the prior, consider the prior

πR
c (β, σ

2) =
1

σ2

∫ 1

0

N

(
β | 0,

[ c
λ
− 1
] σ2

n

)
1

2
√
λ
dλ ,

with resulting Bayes factor (of M0 to M1)

B01(c) =
1√
c

(
n− 2

n− 1

)
t2
(
1 +

t2

n− 1

)−n

2

[
1−

(
1 +

t2

c(n− 1)

)−(n

2 −1)
]−1

.

If n = 10 and t = 3 (p-value=0.015), B01(c) as a function of c ≥ 1 is

2 4 6 8 10 12 14

0.22

0.24

0.26

0.28

Bayes Factor as a Function of c
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Contour plot of the ratio of the recommended Bayes factor to the minimum

Bayes factor for 2 ≤ n ≤ 50 and 3 ≤ t ≤ 6.
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Comparison with p-values

For a given n and t, compute the p-value p(n, t) and consider the contours of

R(n, t) =
infc[B01(c)/(1 +B01(c)]

p(n, t)
, for 2 ≤ n ≤ 50 and 3 ≤ t ≤ 6 .
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Full inferences for the robust prior:

• Model specific posterior means and variances are available in closed form.

• Predictive means and variances (through model averaging) are available

in closed form.

• Given λ, all means and variances and easy to sample (just normal

distribution inferences). One can obtain independent samples from the

posterior distribution of λ as follows:

– Draw u from Uniform (0, F
Beta(

ki+1

2 ,
n−k0−ki−1

2 )
((1 + C2

n,ki

Qi0

1−Qi0
)−1)),

– Set v = F−1

Beta(
ki+1

2 ,
n−k0−ki−1

2 )
(u),

– Let λ = C2
n,ki

Qi0v
(1−Qi0)(1−v) .
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The ‘Intrinsic’ conventional priors for variable selection

The intrinsic prior for the parameters in model Mi, when M0 is the base

model and minimal training sample size mi = k0 + ki + 1 is used, is given by

πI
0(β0, σ

2) =
1

σ2
,

πI
i (β0,βi, σ

2) =
1

σ2

∫ 1

0

Nki

(
βi | 0,

(n− k0)

λ(ki + 1)
Σi

)
1

πλ
1
2 (1− λ)

1
2

dλ .

The resulting Bayes factor of Mi to M0 is (recalling that Qi0 = SSEi/SSE0)

Bi0 =

∫ 1

0

(
1+

(n− k0)

λ(ki + 1)
Qi0

)− (n−k0)
2

(
1 +

(n− k0)

λ(ki + 1)

) (n−k0−ki)

2 1

πλ
1
2 (1− λ)

1
2

dλ .

Two Innovations:

1. The derivation does not require X0 and Xi to be orthogonal.

2. Obtaining Σi as an average over training samples is done for more than

just a null base model.
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Choice of the Base Model for Intrinsic Priors

The null model and ‘intercept only’ model are often chosen to be the base

model. Proposal: the base model should be the smallest plausible model.

• The intrinsic prior arises from ‘imaginary training samples’ from the base

model. If the base model is extremely implausible, then the intrinsic prior

is being trained by training samples that are not at all like the real data.

• The conditional Lindley paradox (Som et al. (2016)) can arise when an

implausible base model is used. Consider the following three models, with

ε ∼ Nn(ε | 0, I) : M0 : y = β01+ σε, M1 : y = β01+X1β1 + σε ,

M2 : y = β01+X1β1 +X2β2 + σε ,

and suppose ||β1|| → ∞. If M0 is used as the base model, then B21 → 0,

even if β2 is significatively different from zero; indeed, while M2 is the

true model, the posterior probability of M1 will go to one!

• Simulations in Casella and Moreno (2006) show that using the null model

as the base model can give inferior results.
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Recommendation: Choose the base model in two stages.

Stage 1. Perform the intrinsic prior analysis using the intercept model (or

possibly the null model) as the base model and compute the posterior

inclusion probabilities (the overall posterior probability that the variable

occurs in models) of all the variables.

Stage 2. If any variables have extremely high posterior inclusion probability

(e.g., 0.99), include them in the base model, yielding a new base model

M∗
0 (with covariates (β1, . . . , βk∗

0
)), and derive the intrinsic priors with

respect to this new base model.

The simplest ensuing analysis is to

• only consider M∗
0 and larger models;

• assign these models re-weighted prior probabilities;

• complete the model uncertainty analysis with the new intrinsic priors.

This overcomes the problems of using an implausible base model and avoids

the need for complications such as using different mixing parameters for

different variables.
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Here is a result (from Berger et al. (2022)) that shows the discarded models

have negligible total posterior probability.

Lemma. Suppose the variable corresponding to βi has posterior inclusion

probability pi . Let Me denote the set of models excluded by the above

process. Then the posterior probability of Me is less than
∑k∗

0

i=1(1− pi).

Example Children obesity dataset (OBICE study) has n = 996 and k = 16

possible covariates, listed in the first column of Table 1. The original base

model was the intercept-only model. The table entries are the posterior

inclusion probabilities of the variables. IN refers to variables that were

included at Stage 2 in the new base model. Two different prior distributions

are considered: the intrinsic prior and the Zellner g-prior.

The Stage 2 analysis restricts the model space to M∗
0 (intercept and the IN

variables) and larger models. Thus the model space goes from 216 models at

Stage 1 to 210 models, for the intrinsic prior, and 211 for the Zellner g-prior at

Stage 2. So the vast majority of models are excluded but the upper bounds

on the total posterior probability of all excluded models are, respectively,

0 + 0.007 + 0 + 0 + 0.002 + 0 = 0.009 and 0 + 0 + 0 + 0.009 + 0 = 0.009.
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Intrinsic prior Zellner g-prior

Variable Stage 1 Stage 2 Stage 1 Stage 2

Age 1.000 IN 1.00 IN

Weight at birth 0.993 IN 0.849 0.845

Height at birth 0.987 0.987 0.817 0.812

Sex 0.567 0.503 0.173 0.172

The father is obese 1.000 IN 1.000 IN

The mother is obese 1.000 IN 1.000 IN

...has 5 daily meals 0.998 IN 0.991 IN

...eats vegetables 0.388 0.326 0.064 0.064

...eats fruit 0.348 0.289 0.053 0.053

...afternoon snacks. 0.841 0.793 0.431 0.423

...was breastfed 0.442 0.376 0.082 0.082

...practices sports 0.885 0.860 0.676 0.672

...watches TV 1.000 IN 1.000 IN

...plays electronic 0.409 0.343 0.066 0.065

...sleeps 0.445 0.380 0.084 0.084

Daily candy consumption 0.987 0.982 0.930 0.928

Table 1: Posterior inclusion probabilities of variables at Stage 1 and Stage 2, under the

intrinsic prior and the Zellner g-prior.
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The empirical geometric expected posterior prior in linear models

For model M of dimension m (the empirical expected posterior priors do not

depend on any other models, so we can drop all the model indices), the

empirical density of any training sample ym(l), of size m from the actual

data, is just 1/L = 1/

(
n

m

)
, so the empirical expected posterior prior,

starting with the objective prior πO(β, σ2) = 1/σ2, is

πEEP (β, σ2) =
∑

l

πO(β, σ2 | ym(l))
1

L
.

The empirical geometric expected posterior prior is, where X(l) denotes the

covariates corresponding to ym(l),

πEGEP (β, σ2) ∝
∏

l

[πO(β, σ2 | ym(l))]1/L ∝ σ−2
∏

l

Nm(ym(l) | X(l),β, σ2)1/L ,

since the normalizing constants in the posteriors are just constants. Thus
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πEGEP (β, σ2) ∝ σ−(2+m) exp

{
− 1

2σ2 L

∑

l

|ym(l)−X(l)β)|2
}

∝ σ−(2+m) exp
{
− m

2σ2n
|y −Xβ)|2

}

∝ σ−(2+m) exp
{
− m

2σ2n

[
(β̂ − β)

′

X
′

X(β̂ − β) + S2
]}

,

which is the recommended version of O’Hagan’s fractional prior. Note that

πEGEP (β) ∝
[
(β̂ − β)

′

X
′

X(β̂ − β)

S2
+ 1

]−m/2

.

• This is clearly a ‘non-local’ prior; in contrast, the intrinsic prior was a

‘local’ prior.

• In general, intrinsic priors are local priors (favoring smaller models) and

empirical expected posterior priors are non-local priors (favoring larger

models). Try both and, if the answers are similar, great!

• While centered at β̂, this has very flat tails.
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Luis and I recommended weighting training samples by their information

content |X(l)
′

X(l)|. Using these in geometric averaging with the intrinsic

prior (null model as base model and given λ and σ2) yields the prior

Nki

(
β

∣∣∣∣ 0,
nσ2

λ(ki + 1)
Ω

)
, Ω−1 =

∑

l

|X(l)
′

X(l)|
|X ′X| (X(l)

′

X(l)) .

Example: Suppose X ′ =


 x′

1

x′
2


 ≡


 x11 x12 . . . x1n

x21 x22 . . . x2n


 and ki = 2.

Minimal training samples are of size m = 2. It can be shown that

Ω−1 =
1

(|x1|2|x2|2 − 2x′
1x2)


|x1|2


 x

(2)′

1 x
(2)
2 x′

1x
(3)
2

x′
1x

(3)
2 x

(2)′

2 x
(2)
2




+ |x2|2

 x

(2)′

1 x
(2)
1 x′

2x
(3)
1

x′
2x

(3)
1 x

(2)′

1 x
(2)
2


− 2(x′

1x2)


 x′

2x
(3)
1 x

(2)′

1 x
(2)
2

x
(2)′

1 x
(2)
2 x′

1x
(3)
2




 ,

where v(j) = (vj1, v
j
2, . . . , v

j
n)

′.
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Thanks all and

HAPPY BIRTHDAY LUIS!
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