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A Bridge between Cross-validation Bayes Factors and Geometric Intrinsic Bayes Factors

X, areiid. 1(:16) andg(-|\) are
Parametric models. A training sample (TS)
Xy = (X,

-Xa) and a validation set (VS):
Xe = Xmar,

+Xa). Let 8,, and A, be the
M.LEsof 8 and ), respectively, computed
from X;. Cross-validation Bayes Factors (CVBF)
L fl8a)
B X)) = [[| o=

=1
1 806A)
Geometic Intrinsic Bayes Factors (GIBF)

.
a0y =[] J fxle)T(elxr)de

et J SO )

Leave-one-out Cross-validation (LOO-CV)

toap; () = oz [ 1(x19Ypi(e)s0

where py is the posterior of distributions of the data and|

R N e s
Note: L used above represents ()

Yekun Wang, Luis Pericchi
Department of Mathematics, University of Puerto Rico

Normal Means Problem Performances by B2&-Cantinuous)

Hypothesis testing Ho: N(8o. %) vs Hy: N(8, %),
where o is known. CVBF and IBF are

["z_a:“)[(im‘im)’—[im—so)ll} |
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o
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the data of

nerate the

- Thresholds

LOO-CVBF with GIBF and CVBF

Hypothesis testing: N(0, 1) vs M(2.1) Here the
prior we use a uniform 9
Expectations

E(logBF; 5°°)

E(logBF;,~) =}
E(logBF;,™) =]

Simulations

We take n=1004

sampling LOG)
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The intrinsic prior Bayes factor for testing a precise hypothesis

Consider the test of Hy : 8 = 0 versus H;y : 0 # 0, where 0 is a
k-dimensional unknown parameter, based on i.i.d. data @ = (x1,...,x,)
having density f(x | 8). Suppose 79 (0) is a standard objective estimation

prior (it could be just constant). Then the intrinsic prior Bayes factor for the

test 1s
By — f(z | 6o)
JU f(z | 0)7©(0 | z*) db]f(x* | Bo) da
_ f(x | 6o)
[m0 (| &) f(z* | 8) da
when * = (z7,...,2}) is an imaginary minimal training sample (more
formally, one wants that m® = [ f(x 72(0) df < oo but m®(x*) be

infinite for a smaller Sample), (9 | x*) = ( | 0)7°(0)/mP° (z*), and

mP(z | £*) = m®(xz, z*)/mC(z*).

N /
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This is the Bayes factor arising from the intrinsic prior

~1(6) = / 06 | ) f(z" | B) da

using the expected posterior prior formulation of an intrinsic prior.

Fxample (Higgs Boson): Test Hy : 0 = 0 versus Hy : § > 0, based on i.i.d.
x; ~ f(x; | 0) = (0+b)exp{—(0+b)x;},i=1,...,n, where 0 is the mass of
the Higgs boson and b is a known background mean rate.

e The usual objective estimation prior for § would be 7€ (0) =1/(0 +b) .
e A minimal sample size for the resulting posterior to be proper is k = 1.

e Computation then yields 7/(0) = [79(0 | z%) f(z} | 0)dxt = b/(0 + b)?
and

exp{—bnz} (bnz)l™* B
(0 + b exp{—(0 + b)nz }b(0 + b)~2 d0 (n Z (n — 1) ]

N /
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\

Variable Selection in the Normal Linear Model

e The full model: observe independent 41, vys, ..., y,, where

Vi = [20,i1801 + -+ - + T0iko Poke| + Titf1 + - -+ TipBp + €

— the z¢,; and z;; being given covariates;
— the (’s being unknown;
— the ¢; being independent N (e | 0,02) errors, with o? unknown.
e Defining y = (y1, ... ,yn)/, X as the n x ky matrix with elements xg ;;,

X as the n x p matrix with elements z;;, B, = (Bo1, - - - ,50/.30)/, and
B=(061,.-. ,Bp)/, this model can be written

Mp:y~ Ny,(y| XoBy+ X3,0°I).

11
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#

The simplest model is assumed to be

Mo :y ~ Nu(y | XoBy,0°1);
with X consisting of the covariates that are to be included in all
models (e.g., the intercept in ordinary linear regression).

Between My and Mg are 2P — 2 other models M;, each additionally
including a non-null subset of k; of the remaining p covariates:

M;:y ~ No(y | XoBy + X:B,,0°I);

X ; is the n x k; matrix consisting of the chosen covariates, i.e., the chosen

columns of X; the corresponding vector of unknown parameters is denoted 3, .
(By,0?) are the common parameters in all models,
7i(Bg, B;,0°) is the prior distribution of the parameters in M;,

Pr(M;) is the prior probability of model M;. (We use the

recommendation of Jeffreys in examples.)

12
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2

Bayes model selection

e Is based on posterior probabilities for each model:
m;(y)Pr(M;)
N

Zj:l mj(y)Pr(M;)

Pr(M; |y) =

Y

where
o) = [ Naly | XoBy + X,8,.0° 1) w3 (B B,0°) B, 4B, do”

is the marginal likelihood of M}, quantifying how likely the observed
data is under that model.

m;(y)
m;(y)

o p;, = Z{Mk that containz;) Pr(Mj | y) is the posterior inclusion
probability of the covariate z;.

N /

13

e Bj; = is the Bayes factor of M; to M;.
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The ‘Robust’ conventional priors for variable selection
(Bayarri, Berger, Forte and Garcia-Donato, 2012):

Defining 3; = o (V;Vi)_l, where V;, = (I,, — XO(XE)XO)_lXé))X’L’a

1
7-‘-(]ﬁ!)%(/8070-2) — 9

o)
1 [t 1
WzR(IBOaIBiaUQ) = §/0 N, (,37; 0, ()\(ko—:nki) — 1) Z) Fd)\

“Although this prior is not closed form, it gives closed form marginal
likelihoods, and closed form Bayes factors

ki —(n—
B, _{n—I—l }_7 Qio( ko)/2 F[kz-—i—l.n—ko.ki—l—?) (1-Q;, )(k —|—k0)]
10 — kz—l—ko kz—|—1 211 9 ) 9 ) 9 ) (1_|_ ) )

where I is the standard (Gauss) hypergeometric function and

is the ratio of the sum of squared errors of models M; and M,.”

-

/
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New expression:

9 0 2 2

Qi \~
2 i

where C), , = ﬁm’ Beta(-,-) is the Beta function and Fgetq(q,p)(+) is the
CDF of the Beta(a,b) distribution.

Cor o i+l n—Fko— ki —1
BiO: ki Q (n—ko—k; 1)/2(1_QZO) (kz+1)/2B€tCL( + n 0 )

Example: Bayesian t-test. Here kg = 0 and k1 = 1. It is easy to see that
Qo= (1+ nt—_gl)_l, where t is the usual t-statistic. Computation yields that

B = Yrtl—1) (1 b )m (1 _ [1 Lt ](n2)/2> |

(n—2) t2 n—1 n?—1
Ast — 0, Biyg — 1/[2v/n + 1]. For n = 2, this is to be interpreted as

\ Blozg-(lth%)-log(lJrg). /
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To study robustness with respect to the scale of the prior, consider the priox\

1 1 C o’ 1
R 2\ _ s
Wc(ﬂ,a)—02/0 N(ﬂ\O,[A 1] n)Qﬁd)\’

with resulting Bayes factor (of My to M)

o= (122) 0525

If n =10 and t = 3 (p-value=0.015), By1(c) as a function of ¢ > 1 is

N3
 —
—_

I
RN
[a—

)
VN
S ~
| [\V)
—_
N—"
N
N
N
|
—
N—"
I |

Bayes Factor as a Function of ¢

0.28

0.26

0.24

0.22
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Contour plot of the ratio of the recommended Bayes factor to the mlmmum\
Bayes factor for 2 <n <50 and 3 <t <6.

Ratio of Recommended Bayes factor to minimum Bayes factor

50

17
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Comparison with p-values

For a given n and t, compute the p-value p(n,t) and consider the contours of

inf.|Bo1(c)/(1 + Boi(c)]

R(n,t) = for2<n<50and 3<¢t<6.

p(n,t) ’

Ratio of Minimum Bayesian Error in Rejection to P -values

18
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Full inferences for the robust prior:
e Model specific posterior means and variances are available in closed form.

e Predictive means and variances (through model averaging) are available

in closed form.

e Given A, all means and variances and easy to sample (just normal
distribution inferences). One can obtain independent samples from the

posterior distribution of A\ as follows:

— Draw u from Uniform (0, F', (kitt m—ko—k, _1)((1 + C? 1?”, )™H),
2 9 KA

— Setv=F elt (k _|_1 n— k02k—1)(u)7

_ 2 Qz v
Let A = C ki (1— ong(l v) "

N /
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Ghe ‘Intrinsic’ conventional priors for variable selection \

The intrinsic prior for the parameters in model M,;, when M is the base

model and minimal training sample size m; = ko + k; + 1 is used, is given by

7‘-6(/3070-2) — i?
(n—ko)

2
1
i (Bg, By, 0°) = _/ Ny (B | 0, YCES) ) S EYTRNSE d\.

The resulting Bayes factor of M; to My is (recalling that Q;o = SSFE;/SSEy)

(n—kg—Fk;)

1 n — ko o n — ko 2
Bio = /0 (1+>(\(k f 1)) Qo) (H A((kf 1))> Y (11— Ve

1

N
N~

Two Innovations:

1. The derivation does not require Xy and X ; to be orthogonal.

2. Obtaining 3J; as an average over training samples is done for more than

let a null base model. /
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The null model and ‘intercept only’ model are often chosen to be the base

model. Proposal: the base model should be the smallest plausible model.

Choice of the Base Model for Intrinsic Priors\

e The intrinsic prior arises from ‘imaginary training samples’ from the base
model. If the base model is extremely implausible, then the intrinsic prior

is being trained by training samples that are not at all like the real data.

e The conditional Lindley paradox (Som et al. (2016)) can arise when an
implausible base model is used. Consider the following three models, with

e~Nu(€|0,I): My:y=pBol+o0e, M;:y=pS1+X18,+0¢,
My : y = (ol + X108, + X208, + o€,

and suppose ||31|| = oo. If My is used as the base model, then By — 0,
even if 3, is significatively different from zero; indeed, while M5 is the

true model, the posterior probability of M; will go to one!

e Simulations in Casella and Moreno (2006) show that using the null model

\ as the base model can give inferior results. /

21
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Recommendation: Choose the base model in two stages.

Stage 1. Perform the intrinsic prior analysis using the intercept model (or
possibly the null model) as the base model and compute the posterior
inclusion probabilities (the overall posterior probability that the variable
occurs in models) of all the variables.

Stage 2. If any variables have extremely high posterior inclusion probability
(e.g., 0.99), include them in the base model, yielding a new base model

Mg (with covariates (831, ..., Bk:)), and derive the intrinsic priors with
respect to this new base model.

The simplest ensuing analysis is to
e only consider M and larger models;
e assign these models re-weighted prior probabilities;
e complete the model uncertainty analysis with the new intrinsic priors.

This overcomes the problems of using an implausible base model and avoids

the need for complications such as using different mixing parameters for

@Herent variables. /

22
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Here is a result (from Berger et al. (2022)) that shows the discarded models\
have negligible total posterior probability.

Lemma. Suppose the variable corresponding to (3; has posterior inclusion
probability p; . Let M¢ denote the set of models excluded by the above
process. Then the posterior probability of M€ is less than Zfil(l — i)

Example Children obesity dataset (OBICE study) has n = 996 and k = 16
possible covariates, listed in the first column of Table 1. The original base
model was the intercept-only model. The table entries are the posterior
inclusion probabilities of the variables. IN refers to variables that were
included at Stage 2 in the new base model. Two different prior distributions

are considered: the intrinsic prior and the Zellner g-prior.

The Stage 2 analysis restricts the model space to M{ (intercept and the IN
variables) and larger models. Thus the model space goes from 2!° models at
Stage 1 to 2!V models, for the intrinsic prior, and 2! for the Zellner g-prior at
Stage 2. So the vast majority of models are excluded but the upper bounds

on the total posterior probability of all excluded models are, respectively,
\O—F 0.007 +04+0+0.0024+0=0.009 and 040+ 04 0.009 + 0 = 0.009. /
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/ Variable

Intrinsic prior

Zellner g-prior

Stage 1  Stage 2 | Stage 1  Stage 2
Age 1.000 IN 1.00 IN
Weight at birth 0.993 IN 0.849 0.845
Height at birth 0.987 0.987 0.817 0.812
Sex 0.567 0.503 0.173 0.172
The father is obese 1.000 IN 1.000 IN
The mother is obese 1.000 IN 1.000 IN
...has 5 daily meals 0.998 IN 0.991 IN
...eats vegetables 0.388 0.326 0.064 0.064
...eats fruit 0.348 0.289 0.053 0.053
...afternoon snacks. 0.841 0.793 0.431 0.423
...was breastfed 0.442 0.376 0.082 0.082
...practices sports 0.885 0.860 0.676 0.672
...watches TV 1.000 IN 1.000 IN
...plays electronic 0.409 0.343 0.066 0.065
...sleeps 0.445 0.380 0.084 0.084
Daily candy consumption 0.987 0.982 0.930 0.928

KTable 1: Posterior inclusion probabilities of variables at Stage 1 and Stage 2, under t

intrinsic prior and the Zellner g-prior.

}y

24
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The empirical geometric expected posterior prior in linear model\

For model M of dimension m (the empirical expected posterior priors do not
depend on any other models, so we can drop all the model indices), the

empirical density of any training sample y, (), of size m from the actual

data, is just 1/L = 1/( "

) , S0 the empirical expected posterior prior,
m

starting with the objective prior 79(3,02%) = 1/02, is

T8, 0 ZW (8, 2\ym())

The empirical geometric expected posterior prior is, where X (1) denotes the

covariates corresponding to y,, (1),

TPEEP (B, 0%) H (B:0% | Y (O o2 [ [ Ny, (1) | X (1), 8,0%)*
l

\sinee the normalizing constants in the posteriors are just constants. Thus /
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#

7TEGEP(/@) 0_2) x 0_—(2—|—m) exp {

p—t

\V}

5L 2 9D - X(l)ﬁ)|2}

x o G (- Ty - xp)1)
« o {2 (G- X X3 8+ 57}

which is the recommended version of O’Hagan’s fractional prior. Note that

AN

REGEP(3) o [(B -B8) X X(B-p)

—m/2
+1

S2

e This is clearly a ‘non-local’ prior; in contrast, the intrinsic prior was a
‘local’ prior.

e In general, intrinsic priors are local priors (favoring smaller models) and
empirical expected posterior priors are non-local priors (favoring larger
models). Try both and, if the answers are similar, great!

\o While centered at ,@, this has very flat tails. /
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v (3]0

A(ki +

Example: Suppose X' =

Luis and I recommended weighting training samples by their information \
content | X (1)’ X (1)|. Using these in geometric averaging with the intrinsic
prior (null model as base model and given A and ¢?) yields the prior

_ X (1) X ()| :
Q 1§ X)) X(0).
ol > (XWX
513/1 _ 11 12 L1in and ki — 2
xh T21  T22 Ton

Minimal training samples are of size m = 2. It can be shown that

(2)’
(3

xhxy

(2)
)

there v = (vl 0], ... vl).
27
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f Thanks all and
HAPPY BIRTHDAY LUIS!
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